Math 115
Summer 2017 Lecture 10 $\sqrt{x y}$

Solve by Graphing:

$$
\left.\begin{aligned}
& \left\{\begin{array}{l}
3 x-2 y=-6 \\
y=\frac{-2}{3} x+3
\end{array}\right. \\
& \begin{array}{l|l}
x & y \\
\hline 0 & \quad-x_{1}+(0,3)
\end{array} \quad m=\frac{-2}{3} \\
& \hline-2
\end{aligned} \right\rvert\, 0 \quad . \quad .
$$

when the system has at least one solution, It is called consistent.
when the system has exactly one solution, equations are independent.

Solve by Subs. method:

$$
\left\{\begin{array}{cc}
3 x+2 y=1 \Rightarrow 3(y-3)+2 y=1 \\
x-y=-3 \Rightarrow x=y-3
\end{array}\right] \quad 3 y-9+2 y=1
$$

Soln: $(-1,2)$
SYstem: Consistent
Equations: Independent

Solve by addition/elimination method:

$$
\begin{aligned}
&\left\{\begin{array}{l}
x-2 y \\
2
\end{array}\right) 8 \\
& 3 x+y=-4
\end{aligned} \Rightarrow\left\{\begin{array}{l}
x-2 y=8 \\
3(0)+y=-4 \\
y=-4
\end{array}\right]=0 \quad x=0
$$

Sorn: $(0,-4)$ system: Consistent Independent

Solve by Graphing:

$$
\left\{\begin{array}{l}
2 x+5 y=-10 \\
y=\frac{-2}{5} x+2
\end{array}\right.
$$

Solution: No Solution
System: Inconsistent

Equations: Independent

Solve by subs.

$$
\left\{\begin{array}{l}
4 x-2 y=5 \\
-2 x+y=8 \Rightarrow y=2 x+8 \\
4 x-2(2 x+8)=5 \Rightarrow 4 \times-4 x-16=5
\end{array}\right.
$$

Solution: ϕ or No Solution
System: In consistent
Equations: Independent

Solve by elimination / addition method:

$$
\left\{\begin{array}{l}
3 x-2 y=15 \\
-3 x+2 y=-10
\end{array}\right.
$$

Soln: \varnothing, no Solution
false
System: Inconsistent
Egns: Independent.

Solve by Graphing

$$
\{\begin{array}{l}
4 x-3 y=9 \\
y=\frac{4}{3} x-3
\end{array} \underbrace{-3 y=-4 x+9}_{-} \begin{array}{l}
y=\frac{4}{3} x-3
\end{array}
$$

Soln: Infinitely Many Solutions system: Consistent Equations: Dependent.

Solve by Subs.

$$
\begin{array}{ll}
\begin{cases}6 x-2 y=10 & 6 x-2(3 x-5) \\
y=3 x-5 & 6 x-6 x+10 \\
y & =10\end{cases} \\
\text { Soln: Infinite \# of Solus. } \quad \begin{aligned}
10 & =10
\end{aligned} \\
& 0=10-10
\end{array}
$$

System: Consistent
True
Egns: Dependent.

Solve by addition/ elimination method:

$$
4\left\{\begin{array} { l }
{ 3 x - y = 4 } \\
{ 4 y - 1 2 x = - 1 6 }
\end{array} \Rightarrow \left\{\begin{array}{l}
12 x-4 y=16 \\
4 y-12 x=-16
\end{array}\right.\right.
$$

$$
0=0
$$

Soln: Infinite \# of Solus.

System: Consistent
Equs: Dependent

Solve $12\left\{\frac{3}{4} x+\frac{2}{3} y=2 \quad\right.$ Hint: Use LCD to

$$
\begin{gathered}
\left\{\begin{array}{l}
3\left\{\begin{array} { l }
{ \text { clear fractions } } \\
{ x + \frac { y } { 3 } = 6 } \\
{ 9 x + 8 y = 2 4 } \\
{ 3 x + y = 1 8 }
\end{array} \Rightarrow \left\{\begin{array}{l}
9 x+8 y=24 \\
-9 x-3 y=-54
\end{array}\right.\right. \\
3 x-6=18 \\
3 x=24 \\
x=8
\end{array}\right. \\
5 y=-30 \\
y=-6
\end{gathered}
$$

Soln: $(8,-6)$ System: Consistent Equs: Indep.

Solve $10^{1}\{.6 x-.3 y=-1.5 \quad$ Hint: use powers

$$
10^{2}(.04 x-.02 y=-.1
$$ of 10 to remove decimal point

$$
\begin{aligned}
& 10\left\{\begin{array} { l }
{ . 6 x - . 3 y = - 1 . 5 } \\
{ 1 0 0 [. 0 4 x - . 0 2 y = - . 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
6 x-3 y=-15 \\
4 x-2 y=-10
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
2 x-y=-5 \\
2 x-y=-5
\end{array}\right.
\end{aligned}
$$

Infinite \# of Solutions, Consistent, Dependent.

Money Problems:
Lisa has 25 Coins. $D \rightarrow \#$ of Dimes
Dimes $\dot{\varepsilon}$ Nickels only $N \rightarrow \#$ of Nickels
$\begin{aligned} & \text { Total values } \$ 1.90 \\ & \text { How many of each? }\end{aligned} \quad-5\left\{\begin{array}{l}D+N=25 \\ 10 D+5 N=190\end{array}\right.$

$$
\begin{gathered}
\left\{\begin{array}{c}
-5 D-5 N=-125 \\
10 D+5 N=190 \\
5 D=65 \\
D=13 \\
N=12
\end{array}\right.
\end{gathered}
$$

using one variable

$$
\begin{aligned}
& \text { Dimes } \rightarrow x \\
& \text { Nickels } \rightarrow 25-x \\
& \underbrace{10 x}_{\text {Dimes }}+\underbrace{5(25-x)}_{\text {Nickels }}=\underbrace{190}_{\text {Total }} \\
& \text { Value } \\
& y 3 \text { Dimes } \\
& 10 x+125-5 x=190 \\
& 5 x=190-125 \\
& 5 x=65 \\
& x=13
\end{aligned}
$$

Jose has $\$ 365$ in bills.
$\$ 20$ bills $\dot{\varepsilon} \$ S$ bills only.
The number of $\$ 5$ bills was 1 more than twice the number of $\$ 20$ bills.
How many of each? $F \rightarrow \$ 5$ bills

$$
T \rightarrow \$ 20 \text { bills }
$$

$$
\begin{aligned}
& \div 5\left\{\begin{array} { c }
{ 5 F + 2 0 T = 3 6 5 } \\
{ F = 2 T + 1 }
\end{array} \left\{\begin{array}{c}
F+4 T=73 \\
F=2 T+1
\end{array}\left\{\begin{array}{c}
12 \$ 20 \\
\varepsilon \\
25
\end{array}\right\}\right.\right. \\
& 2 T+1+4 T=73 \\
& 6 T=72 \quad T=12 \\
& F=2(12)+1=25
\end{aligned}
$$

Using 1 -Variable
Let x be $\#$ of $\$ 20$ bills

$$
\begin{aligned}
& \begin{array}{l}
\$ 20 \text { bills } \\
\text { value } \\
20 x+1
\end{array}+\underbrace{5(2 x+1)}_{\substack{\text { balls } \\
\text { value } \\
20 x+5}}=365 \underbrace{365}_{\substack{\text { Total } \\
\text { value }}} \\
& 30 x=360 \\
& x=12
\end{aligned}
$$

Moe made $\$ 135$ in tips. $F \rightarrow \$ 5$ bills $\$ 5$ bills $\dot{\varepsilon}$. $\$ 10$ bills only. $T \rightarrow \$ 10$ bills The number of $\$ 5$ bills was 5 fewer than twice the number of $\$ 10$ bills.
use system of linear equations in two variables to find how many of each?

$$
\begin{aligned}
& \div 5\left\{\begin{array} { l }
{ 5 F + 1 0 T = 1 3 5 } \\
{ F = 2 T - 5 }
\end{array} \quad \left\{\begin{array}{l}
F+2 T=27 \\
F=2 T-5
\end{array}\right.\right. \\
& 8 \quad \$ 10 \text {-bills } \\
& 2 T-5+2 T=27 \\
& 11 \text { \$5-bills } \\
& F=11 \quad T=8
\end{aligned}
$$

John needs 50 lb. of candy @ \$1.55/1b.
He has unlimited supply of two types of Candy. One @ $\$ 1.25 / 16$. $\dot{\varepsilon}$ another one $\$ 1.75 / \mathrm{lb}$. How many pounds of each?

$$
\left\{\begin{array}{c}
x+y=50 \\
1.25 x+1.75 y=1.55(50)
\end{array} \div 25\left(\begin{array}{l}
x+y=50 \\
125 x+175 y=155(50)
\end{array}\right.\right.
$$

$$
\begin{aligned}
& -5\left\{\begin{array} { l }
{ x + y = 5 0 } \\
{ 5 x + 7 y = 3 1 0 }
\end{array} \quad \left\{\begin{array}{l}
-5 x-5 y=-250 \\
5 x+7 y=310
\end{array}\right.\right. \\
& \begin{aligned}
& 2 y=60 \\
& 30 \mathrm{lb} . \text { of } \$ 1.75 \text { Type } \\
& 2
\end{aligned} \\
& 20 \mathrm{Ib} \text { of } \$ 1.25 \text { Type }
\end{aligned}
$$

Larry needs 100 liters of 35% acid Solution. He has unlimited supply of 15% acid Solution er 40% acid Solution. How many liters of each Should he mix to obtain what he needs?
\(\underbrace{\left[$$
\begin{array}{l}15 \% \\
\text { Acid }\end{array}
$$\right.}_{x liters}+\underset{Y liters}{\substack{40 \% \\

Acid}}+\frac{\)| 35% |
| :---: |
| Acid |}{100 liters}

$$
\left\{\begin{array}{l}
x+y=100 \\
100.15 x+.40 y=.35(100) \underset{\div 5}{ } \Rightarrow\left\{\begin{array}{l}
x+y=100 \\
15 x+40 y=3500
\end{array}\right.
\end{array}\right.
$$

Jack paid $\$ 3.80$ for 3 eggs and 4 Pancakes.
Mary paid $\$ 2.75$ for 2 eggs and 3 Pancakes. find the price for 1 pancake. $\begin{array}{r}-2\left\{\begin{array}{l}3 E+4 P=3.80 \\ 3 E+3 P=2.75 \\ 2 E \\ \begin{array}{l}-6 E-8 P=-7.60 \\ 6 E+9 P=8.25\end{array}\end{array} \quad \begin{array}{l}\text { Eliminate } \\ \$.65 \text { or }\end{array}\right. \\ \hline P=.65\end{array}$ Eliminate eggs

$$
\begin{aligned}
& 32 E+3 P=2.75 \\
& \left\{\begin{array}{l}
-6 E-8 P=-7.60 \\
6 E+9 P=8.25
\end{array}\right.
\end{aligned} \begin{aligned}
& \$.65 \text { or } \\
& 65 \$
\end{aligned}
$$

$$
\begin{aligned}
& 5 \mathrm{HB} \text { غ } ᄅ F F \Rightarrow \$ 7.75 \\
& 8 \mathrm{HB} \quad \dot{\mathrm{y}} \mathrm{BFF} \Rightarrow \$ 12.25
\end{aligned}
$$

find the price for 10 FF .

$$
\begin{aligned}
& 8\left\{\begin{array} { l }
{ 5 H + 2 F = 7 . 7 5 } \\
{ - 5 \mathrm { H } + 3 \mathrm { F } = 1 2 . 2 5 }
\end{array} \Rightarrow \left\{\begin{array}{l}
40 \mathrm{H}+16 F=62 \\
-40 \mathrm{H}-15 F=61.25
\end{array}\right.\right. \\
& 1 \mathrm{FF} \rightarrow 75 \$ \text { or } \$.15
\end{aligned}
$$

PTA Paid $\$ 76$ to take a group of Kids \& adults to the Zoo. Kid's $+k t \rightarrow \$ 3$

$$
\left\{\begin{array}{l}
k+A=17 \\
3 k+8 A=76
\end{array}\right.
$$

Total $\#$ of Tickets $\rightarrow 17$

$$
k=12
$$

How many of each?

$$
A=5
$$

12 kids i 5 Adults

The difference of two supplementary angles is 104°.
find both angles.

$$
142^{\circ} \quad \dot{ }, 38^{\circ}
$$

$$
\left\{\begin{array}{c}
x+y=180 \\
x-y=104 \\
x=142 \\
y=38
\end{array}\right.
$$

find two complementary angles Such that the sum of 3 times one and 5 times the other one is $\rightarrow 380^{\circ}$.

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
x+y=90 \\
3 x+5 y=380
\end{array} \Rightarrow \begin{array}{l}
x=35 \\
y=55
\end{array}\right. \\
35^{\circ} \text { \& } 55^{\circ}
\end{array}\right.
$$

Due tomorrow @ 6:00 AM SG 11 غ 1 WP 8

You can work on wp 10.
Exam II : Monday
All exams are cumulative.
Ch. 1,2,3,8,9, and Partof 4 .

$$
S G 1-13 ?
$$

Ch. 4 working with expressions, exponential rules, and operations with polynomials.

1) Distributive Prop.

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& a(b-c)=a b-a c
\end{aligned}
$$

ex:

$$
\begin{aligned}
3(2 x-5) & =3 \cdot 2 x-3.5 \\
& =6 x-15
\end{aligned}
$$

Distribute غ̀ Simplify

$$
\begin{aligned}
& 4\left(2 x^{2}-3 x+1\right)-6\left(x^{2}-2 x+1\right) \\
& =8 x^{2}+2 x+4-6 x^{2}+12 x-6 \\
& =2 x^{2}-2
\end{aligned}
$$

find an expression for the perimeter in Simplest form
(1)

$$
\begin{aligned}
& (1) \\
& 7 x^{2}-5 x-6 \\
& P=7 x-2+x^{2}-2 x+8 \\
& P=10 x^{2}-5 x-6+3 x^{2}-2 x+8
\end{aligned}
$$

$$
\begin{aligned}
& P=2 L+2 w 3 x-5 \\
& 3 x+5 \\
& P=2(3 x+5)+2(3 x-5) \\
& P=6 x+10+6 x-10 \\
& P=12 x
\end{aligned}
$$

Exponential Rules:
1)

$$
\prod_{\text {base }}^{x^{n+}=\underbrace{x \cdot x \cdot x \cdot \cdots \cdot x}_{n \text { times }}}
$$

$$
\begin{aligned}
& 5^{3}=5 \cdot 5 \cdot 5,\left(2 x^{2}\right)^{4}=2 x^{2} \cdot 2 x^{2} \cdot 2 x^{2} \cdot 2 x^{2} \\
& \left(-3 x y^{3}\right)^{10}=\underbrace{\left(-3 x y^{3}\right) \cdot\left(-3 x y^{3}\right) \cdots\left(-3 x y^{3}\right)}_{10 \text { times }} \\
& \left(\frac{-2}{5}\right)^{5}=\frac{-2}{5} \cdot \frac{-2}{5} \cdot \frac{-2}{5} \cdot \frac{-2}{5} \cdot \frac{-2}{5}
\end{aligned}
$$

2)

$$
\begin{aligned}
& x^{1}=x \\
& 8^{1}=8 \quad, \quad(-12 x)^{1}=-12 x,\left(4 x^{2} y^{6}\right)^{1}=4 x^{2} y^{6} \\
& \left(\frac{-5 x}{12 y^{3}}\right)^{1}=\frac{-5 x}{12 y^{3}}
\end{aligned}
$$

3)

$$
\begin{aligned}
& x^{0}=1, x \neq 0 \\
& 10^{0}=1, \quad(-100)^{0}=1, \quad\left(4 y^{8}\right)^{0}=1, y \neq 0 \\
& \left(\frac{4}{7}\right)^{0}=1, \quad\left(\frac{-2 x}{3 y^{5}}\right)^{0}=1 \quad x, y \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4) } x^{m} \cdot x^{n}=x^{m+n} \\
& x^{3} \cdot x^{7}=x^{3+7}=x^{10} \\
& x^{4} \cdot x^{15} \cdot x=x^{4+15+1}=x^{20} \\
& \left(5 x^{3}\right)^{7} \cdot\left(5 x^{3}\right)^{8}=\left(5 x^{3}\right)^{15}
\end{aligned}
$$

Find Area.

$$
A=L W=x^{12} \cdot x^{4}=x^{16}
$$

$$
\begin{aligned}
& \text { 5) }\left(x^{m}\right)^{n}=x^{m \cdot n} \\
& \left(x^{3}\right)^{5}=x^{3 \cdot 5}=x^{15} \\
& \left(x^{8}\right)^{2} \cdot x^{4}=x^{16} \cdot x^{4}=x^{20} \\
& \left(y^{6}\right)^{10} \cdot\left(y^{10}\right)^{4}=y^{6 \cdot 10} \cdot y^{10 \cdot 4}=y^{60} \cdot y^{40} \\
& x^{15} \quad \text { find Area } \\
& A=S^{2} \quad x^{15 \quad A=\left(x^{15}\right)^{2}=x^{30}=y^{100}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6) } \begin{aligned}
&(x y)^{n}=x^{n} y^{n} \\
&(2 x)^{4}=2^{4} x^{4}=16 x^{4} \\
&\left(-5 x^{3}\right)^{3}=(-5)^{3}\left(x^{3}\right)^{3}=-125 x^{9} \\
&\left(-2 x^{6} y^{4}\right)^{5}=(-2)^{5}\left(x^{6}\right)^{5}\left(y^{4}\right)^{5} \\
&=-32 x^{30} y^{20}
\end{aligned}
\end{aligned}
$$

$$
\text { 7) } \begin{aligned}
& \frac{x^{m}}{x^{n}}=x^{m-n} \\
& \frac{x^{10}}{x^{4}}=x^{10-4}=x^{6}=\frac{24 x^{12} y^{20}}{4 x^{5} y^{12}} \\
& \frac{\left(-4 x^{12}\right)^{3}}{\left(-8 x^{17}\right)^{2}}=\frac{(-4)^{3}\left(x^{12}\right)^{3}}{(-8)^{2}\left(x^{17}\right)^{2}}=6 x^{12-5 y^{20-12}}=6 x^{7} y^{8} \\
& =\frac{-64 x^{36}}{84 x^{34}}=-x^{2}
\end{aligned}
$$

8) $\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$

$$
\begin{aligned}
& \left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}=\frac{8}{27} \\
& \left(\frac{4}{x^{5}}\right)^{2}=\frac{4^{2}}{\left(x^{5}\right)^{2}}=\frac{16}{x^{10}}
\end{aligned}\left\{\begin{array}{l}
\left(\frac{-3 x^{4}}{y^{8}}\right)^{4} \\
=\frac{(-3)^{4}\left(x^{4}\right)^{4}}{\left(y^{8}\right)^{4}} \\
=\frac{81 x^{16}}{y^{32}}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { 9) } x^{-n}=\frac{1}{x^{n}} \\
& x^{-2}=\frac{1}{x^{2}}, e^{-1}=\frac{1}{2^{1}}=\frac{1}{2} \\
& \left(x^{5}\right)^{-4}=x^{-20}=\frac{1}{x^{20}} \\
& \left(x^{-2}\right)^{18} \cdot\left(x^{-5}\right)^{-7}=x^{-36} \cdot x^{35}=x^{-1}=\frac{1}{x^{1}} \\
& =\frac{1}{x}
\end{aligned}
$$

10)

$$
\begin{aligned}
\frac{x^{-n}}{y^{-m}} & =\frac{y^{m}}{x^{n}} \\
\frac{x^{-5}}{y^{-8}}=\frac{y^{8}}{x^{5}} \quad \frac{x^{-2} y^{7}}{x^{13} y^{-3}} & =\frac{y^{3} y^{7}}{x^{13} x^{2}} \\
& =\frac{y^{10}}{x^{15}}
\end{aligned}
$$

Class Quiz
(1) Sind eqn of a line that contains $(-3,2)$ with slope $\frac{1}{3}$.
Ans. in slope-Int form.
(2) Shade the Solution: $2 x-5 y \leq 15$

